Polysulfonylated cyclodextrins. Part 11. ${ }^{1}$ Preparation and structural validation of three isomeric pentakis(6 - O-mesitylsulfonyl)cyclomaltoheptaoses \dagger

Hatsuo Yamamura,,${ }^{, a}$ Daisuke Iida, ${ }^{a}$ Shuki Araki, ${ }^{a}$ Kyoko Kobayashi, ${ }^{b}$ Ryoichi Katakai, ${ }^{\text {b }}$ Kazuaki Kano ${ }^{c}$ and Masao Kawai ${ }^{a}$
${ }^{a}$ Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
${ }^{b}$ Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
${ }^{c}$ Central Research Laboratories, Tsumura \& Co., 3586 Yoshiwara, Inashiki-gun, Ibaraki 300-1192, Japan

Received (in Cambridge, UK) 9th August 1999, Accepted 13th September 1999

Three isomers of cyclomaltoheptaose derivatives, $\mathbf{1 a - c}$, which possess five mesitylenesulfonyloxy groups on their C-6 atoms, were prepared. Assignment of the regiosiomers was performed by their conversion into compounds containing five 3,6 -anhydroglucose units followed by ${ }^{1} \mathrm{H}$ NMR analyses. The structures of the pentakis(3,6 -anhydro) derivatives were also confirmed by their derivation from the known bis(TBDMS) derivatives.

Introduction

Cyclodextrins (CDs) are cyclic oligosaccharides composed of $\alpha(1 \longrightarrow 4)$-linked glucose units. The most common are cyclomaltohexaose (α-cyclodextrin, α-CD), cyclomaltoheptaose (β-cyclodextrin, β-CD) and cyclomaltooctaose (γ-cyclodextrin, γ-CD) which are composed of six, seven and eight glucose units, respectively. They can include a variety of guest molecules. ${ }^{2}$ Because of this feature, not only the CDs themselves but also their modified derivatives have been the subject of a great number of academic studies as well as industrial applications. ${ }^{2}$ While mono- and per-modification of the hydroxy group(s) on CD molecules have been reported many times, there have not been so many polymodified CDs such as bis- and tris-modified derivatives reported because of difficulties in the preparation and structure determination of the regioisomers. In highly specialized molecules such as enzymes, several functional groups work co-operatively. In the case of CD derivatives, Breslow prepared derivatives possessing two imidazole groups as an artificial ribonuclease. ${ }^{3}$ Multifunctionalized CD derivatives are considered to be quite useful in generating highly sophisticated functions such as those of enzymes and antibodies. For the purpose of regiospecific functionalization of CD, regiospecifically sulfonylated derivatives are versatile synthetic intermediates. As for the $6-O$-sulfonylated α-CD derivatives, all of the thirteen possible sulfonates are available, including the regioisomers of three disulfonates, four trisulfonates and three tetrasulfonates. ${ }^{4}$ However, in the case of $\beta-C D$, tetrasulfonates and pentasulfonates have not been reported among the seventeen possible 6-O-sulfonylated derivatives. Here we will describe the preparation of β-CD derivatives $\mathbf{1 a - c}$ possessing five mesitylenesulfonyl groups on their $\mathrm{O}(6)$ atoms.

Results and discussion

β-CD 2 was subjected to sulfonylation by use of mesitylenesulfonyl chloride in pyridine and the reaction was monitored

[^0]

Fig. 1 RP-HPLC of the mixture obtained by the reaction of β-CD 2 with mesitylenesulfonyl chloride in pyridine. A linear gradient of MeCN was applied.
by RP-HPLC analysis (Fig. 1). As in the case of mesitylenesulfonylation of $\alpha-\mathrm{CD},{ }^{4}$ the reaction generated a mixture of $6-O$-mesitylsulfonylated derivatives composed of mainly the tetrasulfonates $\mathbf{3}, \ddagger$ pentasulfonates $\mathbf{1}$ and hexasulfonate $\mathbf{4}$. The

\ddagger This is a regioisomeric mixture. The number of mesitylsulfonyl groups was determined by its ${ }^{1} \mathrm{H}$ NMR spectrum. The data are not shown.

Fig. $2{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$) spectra of the pentakis($6-O$-mesitylsulfonyl) derivatives $\mathbf{1 a}$ (a), $\mathbf{1 b}$ (b) and $\mathbf{1 c}$ (c).

reaction mixture was applied to RP chromatography with increasing amounts of MeCN in water, which accomplished the isolation of the three possible isomeric pentasulfonates, $\mathbf{1 a - c}$, in yields of $5.8 \%, 6.6 \%$ and 5.8%, respectively. The elemental analyses and MS spectra of $\mathbf{1 a - c}$ are consistent with the pentakis-mesitylsulfonylated structure. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 1a-c confirmed the existence of five mesitylenesulfonyl groups. As shown in Fig. 2, spectral patterns of the three isomers are significantly different from each other especially in the regions of $\mathrm{C}(1) \mathrm{H}(\delta 4.4-4.9)$ and mesitylenesulfonyl groups $[\delta 2.2-2.6(\mathrm{Me})$ and $6.9-7.1(\mathrm{ArH})]$. Regioisomeric assignment of $\mathbf{1 a}-\mathbf{c}$ was unsuccessful due to poor separation of the signals of glucose residues.

For the purpose of determining the structures of each isomer, the three pentamesitylenesulfonates $\mathbf{1 a - c}$ were converted into the corresponding pentakis(3,6-anhydro) derivatives $\mathbf{5 a - c}$, respectively, by treatment with KOH in aq. MeOH followed by RP chromatographic purification (Scheme 1). The conversion of the $6-O$-sulfonylated glucose unit into the 3,6 -anhydroglucose unit is known to bring about a marked change in the ${ }^{1} \mathrm{H}$ NMR signals because of the unusual ${ }^{4} C_{1}$ conformation of the 3,6 -anhydroglucose. ${ }^{5}$ The proton signals of the bicyclic 3,6anhydroglucose unit are more deshielded than those of the normal glucose units. The change in the shape of the signals is also remarkable: much smaller equatorial-equatorial couplings replace vicinal axial-axial couplings commonly observed for protons of a normal glucose unit. Unlike those of the starting materials 1a-c, the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5 a - c}$ in $\mathrm{D}_{2} \mathrm{O}$ showed well separated signals, as expected. In order to assign the A,B,C,D,E-, A,B,C,D,F- and A,B,C,E,F-isomeric structures to the pentakis(anhydro) derivatives 5a-c, relationship of the two unmodified glucose units in each isomer must be revealed. Neighbouring relationships between a glucose unit and the other glucose or 3,6-anhydroglucose unit can be studied by the observation of interunit NOE between the corresponding $\mathrm{C}(1) \mathrm{H}$ and $\mathrm{C}(4) \mathrm{H}$. In the case of compound $\mathbf{5 a},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQF-COSY and HOHAHA \dagger experiments enabled the assignment of the important signals, namely $\mathrm{C}(5) \mathrm{H}(\delta 4.13)$ and $\mathrm{C}(4) \mathrm{H}(\delta 3.64)$ of one of the two unmodified glucose units and $\mathrm{C}(1) \mathrm{H}(\delta 5.18)$ of the other glucose unit. The ROESY spectrum of $\mathbf{5 a}$ showed cross-peaks corresponding to neighboring

Scheme 1 Reagents: i, mesitylenesulfonyl chloride, pyridine; ii, KOH; iii, TsCl , pyridine.

Fig. 3 Observed NOE cross-peaks between the protons of two glucoses in the ROESY spectrum of $\mathbf{5 a}$ in $\mathrm{D}_{2} \mathrm{O}$.

Fig. 4 Observed NOE cross-peaks between the protons of two glucoses in the ROESY spectrum of 5 c in $\mathrm{D}_{2} \mathrm{O}$.
$[\mathrm{C}(1) \mathrm{H}: \mathrm{C}(4) \mathrm{H}]$ and $[\mathrm{C}(1) \mathrm{H}: \mathrm{C}(5) \mathrm{H}]$ pairs as shown in Fig. 3, revealing that the two unmodified glucose units are directly linked by a $\mathrm{C}(1)-\mathrm{O}-\mathrm{C}(4)$ glycoside linkage. In the ROESY spectrum of $\mathbf{5 c}$, the cross-peaks were observed between one 3,6anhydroglucose (unit F) and the two glucose units (unit E and G), namely $\left[\mathrm{C}(1)^{\mathrm{G}} \mathrm{H}(\delta 5.07): \mathrm{C}(4)^{\mathrm{F}} \mathrm{H}(\delta 4.17)\right]$ and $\left[\mathrm{C}(1)^{\mathrm{F}} \mathrm{H}\right.$ $\left.(\delta 5.22): \mathrm{C}(4)^{\mathrm{E}} \mathrm{H}(\delta 3.61)\right]$, which revealed the sequential relationship of the three residues, as shown in Fig. 4. Thus, we established the structure of $\mathbf{5 a}$ to be A,B,C,D,E-pentakis(3,6anhydro) $-\beta-C D$ and the structure of 5 c to be that of the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}$-isomer. Accordingly the structure of the remaining regioisomer $\mathbf{5 b}$ was determined to be the A,B,C,E,F-isomer.

In order to confirm the structural assignment of the penta-kis(3,6-anhydro) derivatives 5a-c independently, a chemical correlation was then attempted with the bis(TBDMS) derivatives whose structures had been already established. ${ }^{6}$ The AD-bis(6-O-TBDMS) derivative 6b was treated with TsCl in pyridine to sulfonylate the five 6-OHs. RP-HPLC analysis showed that this reaction generated a mixture of the desired product $7 \mathbf{b}$ and by-products with smaller and larger t_{R}-values. The by-products were assumed to be less-tosylated derivatives and those in which the $2-\mathrm{OH}(\mathrm{s})$ were also sulfonylated since bulky TBDMS groups might make further sulfonylation of 6-OHs somewhat difficult. RP chromatographic purification gave the tosylate compound $\mathbf{7 b}(19.1 \%)$. Each of the isomers, $7 \mathbf{a}$ and $7 \mathbf{c}$, was prepared similarly from $\mathbf{6 a}$ and $\mathbf{6 c}$, in yields of 14.4% and 15.7%, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectra of products $7 \mathbf{a}-\mathbf{c}$, the signals for five Ts groups $[\delta 2.3-2.6(\mathrm{Me})$ and 7.3-7.8 (ArH)] appeared in addition to those of two TBDMS groups.§ The structures of $7 \mathbf{a}-\mathbf{c}$ were also confirmed by their elemental analyses and mass spectra.

The pentatosylated AD-bis(TBDMS) CD 7b was treated with KOH in aq. MeOH for the purpose of conversion of the tosylated glucose units to 3,6-anhydroglucose units and also deprotection of the TBDMS groups. ${ }^{7}$ RP chromatographic separation by gradient elution with increasing EtOH in water gave the desired pentakis(3,6-anhydro) derivative, which was identical to the pentakis(3,6-anhydro) derivative $\mathbf{5 b}$ derived from 1b, by comparing their ${ }^{1} \mathrm{H}$ NMR spectra (Scheme 1). Similarly, the isomers $7 \mathbf{a}$ and $7 \mathbf{c}$ were converted to the corresponding 3,6-anhydro derivatives which were identified as $\mathbf{5 a}$ and $\mathbf{5 c}$, respectively. Consequently, parent compounds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ were determined unambiguously to be $6^{\mathrm{A}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{E}}, 6^{\mathrm{A}}, 6^{\mathrm{B}}$, $6^{\mathrm{C}}, 6^{\mathrm{E}}, 6^{\mathrm{F}}$ - and $6^{\mathrm{A}}, 6^{\mathrm{B}}, 6^{\mathrm{C}}, 6^{\mathrm{D}}, 6^{\mathrm{F}}$-pentakis(O-mesitylsulfonyl)- $\beta-$ CDs , respectively.

Thus, three isomers of CD derivatives possessing five mesitylenesulfonyl groups on their primary hydroxy groups were prepared. This is a part of our research work of multisulfonylated CDs in order to establish a completely indexed 'library' of CD sulfonates for developing novel modified CDs. The study of other $6-O$-sulfonates of $\beta-\mathrm{CD}$, namely tetrasulfonates, and also those of γ-CDs including tri-, tetra-, pentaand hexasulfonates, are in progress.

Experimental

${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra were recorded on a JEOL $\alpha 500$. FAB mass measurements were carried out with a ShimadzuKratos Concept 32IH spectrometer. TLC was run on precoated silica gel plates (Art 5554, Merck) with the following solvent systems; $\mathrm{PrOH}-\mathrm{AcOEt}-$ water $[7: 7: 2(\mathrm{v} / \mathrm{v} / \mathrm{v})]$ (solvent 1) or [7:7:5 (v/v/v)] (solvent 2). Spot detection was carried out by UV light and/or staining with 0.1% naphthalene-1,3-diol in $\mathrm{EtOH}-$ water $-\mathrm{H}_{2} \mathrm{SO}_{4}[200: 157: 43(\mathrm{v} / \mathrm{v} / \mathrm{v})]$. A prepacked ODS column [LiChroprep RP-18, size A $(10 \times 240 \mathrm{~mm})$, or size B $(25 \times 310 \mathrm{~mm})$, Merck] was used for low-pressure RP column chromatography. RP HPLC was carried out with a J'sphere ODS-M80 ($4 \mu \mathrm{~m} ; 4.6 \times 150 \mathrm{~mm}$ or $2.0 \times 150 \mathrm{~mm}$, YMC Inc.) column.

Pentakis(6-O-mesitylsulfonyl)- $\boldsymbol{\beta}$-CD 1a-c

Lyophilized β-CD $2\left(300 \mathrm{mg}, 2.65 \times 10^{-4} \mathrm{~mol}\right)$ was treated with mesitylenesulfonyl chloride ($3.60 \mathrm{~g}, 1.65 \times 10^{-2} \mathrm{~mol}$) in dry pyridine $\left(30 \mathrm{~cm}^{3}\right)$ at $5^{\circ} \mathrm{C}$ for 5 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, pyridine was evaporated off and the residue was dissolved in 65% aq. $\mathrm{MeCN}\left(40 \mathrm{~cm}^{3}\right)$ and neutralized with NaHCO_{3}, and the mixture was subjected to low-pressure RP chromatography. Stepwise elutions with 65% aq. $\mathrm{MeCN}\left(500 \mathrm{~cm}^{3}\right), 68 \%$ aq. MeCN
§ Each of the compounds 7a-c showed unique NMR signals which may enable isomeric discrimination (see Experimental section).
$\left(500 \mathrm{~cm}^{3}\right), 71 \%$ aq. $\mathrm{MeCN}\left(500 \mathrm{~cm}^{3}\right), 74 \%$ aq. $\mathrm{MeCN}\left(1.5 \mathrm{dm}^{3}\right)$ and gradient elution from 80% aq. $\mathrm{MeCN}\left(1.0 \mathrm{dm}^{3}\right.$) to 100% $\mathrm{MeCN}\left(1.0 \mathrm{dm}^{3}\right)$ were applied. The elution of 68% aq. MeCN gave the tetrasulfonates $\mathbf{3} \$(88.3 \mathrm{mg}, 19.1 \%)$. The $74 \% \mathrm{aq}$. MeCN elution gave the ABCDE-pentasulfonate 1a (31.6 mg , 5.8%), ABCEF isomer 1b ($35.7 \mathrm{mg}, 6.6 \%$) and ABCDF $1 \mathbf{c}$ (31.2 $\mathrm{mg}, 5.8 \%)$. The gradient elution gave hexasulfonate $4(97.7 \mathrm{mg}$, 18.0%).

Compound 1a, R_{f} (solvent 1) 0.42 ; t_{R} [column: J'sphere ODSM80; gradient $40-90 \%$ aq. MeCN (100 min); flow rate $1.0 \mathrm{~cm}^{3}$ min^{-1}] 52.2 min (Found: C, 48.71; H, 5.74; S, 7.27. Calc. for $\left.\mathrm{C}_{87} \mathrm{H}_{120} \mathrm{O}_{45} \mathrm{~S}_{5} \cdot 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.91 ; \mathrm{H}, 6.13 ; \mathrm{S}, 7.48 \%\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; ${ }^{[}{ }^{2} \mathrm{H}_{6}$ DMSO) 2.228, 2.240, 2.254, 2.265, 2.359, 2.378, 2.423 and 2.476 ($15 \mathrm{H}, \mathrm{Me}$), 4.520-4.570, 4.630, 4.662, 4.740 and 4.831 [$7 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 6.922,6.935,6.977,7.004$ and $7.034(10 \mathrm{H}, \mathrm{ArH})$; $\mathrm{m} / \mathrm{z}(+\mathrm{FAB}, \mathrm{LR}) 2068.1\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, $2085.1\left[(\mathrm{M}+\mathrm{K})^{+}\right]$ (HR) $2067.56110\left[(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{C}_{87} \mathrm{H}_{120} \mathrm{NaO}_{45} \mathrm{~S}_{5}\right.$ requires m / z 2067.560 33] (-FAB, LR) 2044.9 [(M)ㄹ. 2197.7 [(M + nitrobenzyl alcohol $)^{-}$] 2243.3 [($\mathrm{M}+$ mesitylenesulfonate $)^{-}$] (HR) $2243.61289\left[(M+\text { mesitylenesulfonate })^{-} . \mathrm{C}_{87} \mathrm{H}_{120} \mathrm{O}_{45} \mathrm{~S}_{5} \cdot \mathrm{C}_{9} \mathrm{H}_{11}{ }^{-}\right.$ $\mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{m} / \mathrm{z}, 2243.613$ 42].

Compound 1b, R_{f} (solvent 1) 0.42 ; $t_{\mathrm{R}} 55.5 \mathrm{~min}$ (Found: C, 49.19; H, 5.68; S, 7.59. Calc. for $\mathrm{C}_{87} \mathrm{H}_{120} \mathrm{O}_{45} \mathrm{~S}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, $49.33 ; \mathrm{H}, 6.09 ; \mathrm{S}, 7.55 \%) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;\left[{ }^{[} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 2.249, 2.261, 2.273, 2.378, 2.389, 2.402, 2.492-2.503, 2.524 and $2.539(15 \mathrm{H}, \mathrm{Me}), 4.487,4.615,4.647,4.687$ and 4.739 [$7 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 6.930,6.960,6.964,7.045$ and $7.078(10 \mathrm{H}, \mathrm{ArH})$; $m / z\left(+\right.$ FAB, LR) $2069.1\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, $2084.2\left[(\mathrm{M}+\mathrm{K})^{+}\right]$ (HR) $2067.55986\left[(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{C}_{87} \mathrm{H}_{120} \mathrm{NaO}_{45} \mathrm{~S}_{5}\right.$ requires m / z, 2067.560 33] (-FAB, LR) 2044.9 [(M) benzyl alcohol $\left.)^{-}\right], 2244.2\left[(\mathrm{M}+\text { mesitylenesulfonate })^{-}\right](\mathrm{HR})$ $2243.60901\left[(\mathrm{M}+\text { mesitylenesulfonate })^{-} . \mathrm{C}_{87} \mathrm{H}_{120} \mathrm{O}_{45} \mathrm{~S}_{5} \cdot \mathrm{C}_{9} \mathrm{H}_{11}{ }^{-}\right.$ $\mathrm{O}_{3} \mathrm{~S}$ requires 2243.613 42].

Compound $1 \mathbf{1 c}, R_{\mathrm{f}}$ (solvent 1) 0.42 ; $t_{\mathrm{R}} 57.7 \mathrm{~min}$ (Found: C, 48.92; H, 5.86; S, 7.55. Calc. for $\mathrm{C}_{87} \mathrm{H}_{120} \mathrm{O}_{45} \mathrm{~S}_{5} \cdot 5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.91$; $\left.\mathrm{H}, 6.13 ; \mathrm{S}, 7.48 \%) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 2.244,2.250$, 2.261, 2.441, 2.451, 2.459, 2.476 and 2.483 ($15 \mathrm{H}, \mathrm{Me}$), 4.533 , $4.578,4.605,4.665,4.714,4.739$ and 4.765 [$7 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 7.011$, 7.018 and $7.030(10 \mathrm{H}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z}(+\mathrm{FAB}, \mathrm{LR}) 2068.1[(\mathrm{M}+$ $\left.\mathrm{Na})^{+}\right], 2084.0\left[(\mathrm{M}+\mathrm{K})^{+}\right](\mathrm{HR}) 2067.55911\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$. $\mathrm{C}_{87} \mathrm{H}_{120} \mathrm{NaO}_{45} \mathrm{~S}_{5}$ requires $m / z, 2067.560$ 33] (-FAB, LR) 2043.9 [(M - H) ${ }^{-}$], 2197.6 [(M + nitrobenzyl alcohol $\left.)^{-}\right], 2243.2$ $\left[(\mathrm{M}+\text { mesitylenesulfonate })^{-}\right] \quad(\mathrm{HR}) \quad 2243.60999 \quad[(\mathrm{M}+$ mesitylenesulfonate) ${ }^{-} . \mathrm{C}_{87} \mathrm{H}_{120} \mathrm{O}_{45} \mathrm{~S}_{5} \cdot \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}$ requires m / z, 2243.613 42].

Pentakis(3,6-anhydro)- $\boldsymbol{\beta}$-CD 5a-c

A solution of the pentasulfonate 1a $\left(79.5 \mathrm{mg}, 3.89 \times 10^{-5}\right.$ $\mathrm{mol})$ in $0.6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}-85 \% \mathrm{aq}$. $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$ was kept at $85^{\circ} \mathrm{C}$ for 1 day. The solution was neutralized with $d-\mathrm{HCl}$ and concentrated in vacuo. The residue was dissolved in water ($30 \mathrm{~cm}^{3}$) and subjected to low-pressure RP chromatography. After elution of water ($200 \mathrm{~cm}^{3}$), gradient elution from water ($200 \mathrm{~cm}^{3}$) to 20% aq. EtOH ($200 \mathrm{~cm}^{3}$) gave the ABCDE pentaanhydride 5a ($32.1 \mathrm{mg}, 79.1 \%$). Similarly, ABCEF anhydride $\mathbf{5 b}$ and ABCDF anhydride $\mathbf{5 c}$ were prepared similarly from 1b and $\mathbf{1 c}$ in 59.5% and 85.9% yield, respectively.

Compound 5a, R_{f} (solvent 2) $0.05 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 3.60$ [dd, $\left.\mathrm{C}(2)^{\mathrm{G}} \mathrm{H}\right], 3.64\left[\mathrm{dd}, \mathrm{C}(2)^{\mathrm{F}} \mathrm{H}\right.$ and $\left.\mathrm{t}, \mathrm{C}(4)^{\mathrm{F}} \mathrm{H}\right], 3.66\left[\mathrm{t}, \mathrm{C}(4)^{\mathrm{G}} \mathrm{H}\right]$, $3.85\left[\mathrm{t}, \mathrm{C}(3)^{\mathrm{G}} \mathrm{H}\right], 3.96\left[\mathrm{t}, \mathrm{C}(3)^{\mathrm{F}} \mathrm{H}\right], 4.13\left[\mathrm{dt}, \mathrm{C}(5)^{\mathrm{F}} \mathrm{H}\right], 5.09[\mathrm{~d}$, $\left.\mathrm{C}(1)^{\mathrm{F}} \mathrm{H}\right]$ and $5.18\left[\mathrm{~d}, \mathrm{C}(1)^{\mathrm{G}} \mathrm{H}\right] ; \mathrm{m} / \mathrm{z}(+\mathrm{FAB}, \mathrm{LR}) 1045.3$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 1067.3\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 1083.3\left[(\mathrm{M}+\mathrm{K})^{+}\right](-\mathrm{FAB}$, LR) $1043.3\left[(\mathrm{M}-\mathrm{H})^{-}\right](\mathrm{HR}) 1043.30884\left[(\mathrm{M}-\mathrm{H})^{-} . \mathrm{C}_{42} \mathrm{H}_{59}{ }^{-}\right.$ O_{30} requires $m / z, 1043.309$ 12].

Compound 5b, R_{f} (solvent 2) $0.05 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 3.60$
 $3.77\left[\mathrm{t}, \mathrm{C}(4)^{\mathrm{G} \text { or } \mathrm{D}} \mathrm{H}\right], 3.80\left[\mathrm{dd}, \mathrm{C}(6)^{\mathrm{G} \text { or } \mathrm{D}} \mathrm{H}\right], 3.91\left(\mathrm{C}(3)^{\mathrm{D} \text { or } \mathrm{G}} \mathrm{H}\right]$, $3.98\left[\mathrm{C}(5)^{\mathrm{G} \text { or } \mathrm{D}} \mathrm{H}\right], 4.03\left[\mathrm{C}(3)^{\mathrm{G} \text { or } \mathrm{D}} \mathrm{H}\right], 4.08\left[\mathrm{C}(5)^{\mathrm{D} \text { or } \mathrm{G}} \mathrm{H}\right], 5.12$
$\left[\mathrm{C}(1)^{\mathrm{D} \text { or } \mathrm{G}} \mathrm{H}\right]$ and $5.16\left[\mathrm{C}(1)^{\mathrm{G} \text { or } \mathrm{D}} \mathrm{H}\right] ; m / z(+\mathrm{FAB}, \mathrm{LR}) 1045.3$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 1067.3\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 1083.3\left[(\mathrm{M}+\mathrm{K})^{+}\right](-\mathrm{FAB}$, LR) $1043.3\left[(\mathrm{M}-\mathrm{H})^{-}\right](\mathrm{HR}) 1043.30931\left[(\mathrm{M}-\mathrm{H})^{-} . \mathrm{C}_{42} \mathrm{H}_{59}{ }^{-}\right.$ O_{30} requires $m / z, 1043.309$ 12].

Compound $\mathbf{5 c}, R_{\mathrm{f}}$ (solvent 2) $0.05 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 3.60$ [dd, $\left.\mathrm{C}(2)^{\mathrm{G}} \mathrm{H}\right], 3.61\left[\mathrm{t}, \mathrm{C}(4)^{\mathrm{E}} \mathrm{H}\right], 3.63$ [dd, $\left.\mathrm{C}(2)^{\mathrm{E}} \mathrm{H}\right], 3.70[\mathrm{t}$, $\left.\mathrm{C}(4)^{\mathrm{G}} \mathrm{H}\right], 3.83$ [dd, $\left.\mathrm{C}(6)^{\mathrm{G}} \mathrm{H}\right], 3.86$ [dd, $\left.\mathrm{C}(6)^{\mathrm{G}} \mathrm{H}^{\prime}\right], 3.89\left[\mathrm{t}, \mathrm{C}(3)^{\mathrm{G}} \mathrm{H}\right]$, $3.94\left[\mathrm{t}, \mathrm{C}(3)^{\mathrm{E}} \mathrm{H}\right], 4.00\left[\mathrm{t}, \mathrm{C}(2)^{\mathrm{F}} \mathrm{H}\right], 4.14\left[\mathrm{dt}, \mathrm{C}(5)^{\mathrm{G}} \mathrm{H}\right], 4.17$ [dd, $\left.\mathrm{C}(4)^{\mathrm{F}} \mathrm{H}\right], 4.52\left[\mathrm{t}, \mathrm{C}(3)^{\mathrm{F}} \mathrm{H}\right], 4.61\left[\mathrm{t}, \mathrm{C}(5)^{\mathrm{F}} \mathrm{H}\right], 5.07\left[\mathrm{~d}, \mathrm{C}(1)^{\mathrm{G}} \mathrm{H}\right], 5.13$ $\left[\mathrm{d}, \mathrm{C}(1)^{\mathrm{E}} \mathrm{H}\right]$ and $5.22\left[\mathrm{~d}, \mathrm{C}(1)^{\mathrm{F}} \mathrm{H}\right] ; m / z(+\mathrm{FAB}, \mathrm{LR}) 1045.3$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 1067.3\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 1083.3\left[(\mathrm{M}+\mathrm{K})^{+}\right](-\mathrm{FAB}$, LR) $1043.2 \quad\left[(\mathrm{M}-\mathrm{H})^{-}\right] \quad(\mathrm{HR}) \quad 1043.30955 \quad\left[(\mathrm{M}-\mathrm{H})^{-}\right.$. $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{O}_{30}$ requires $m / z, 1043.309$ 12].

Bis(6-O-tert-butyldimethylsilyl)-pentakis(6-O-p-tolylsulfonyl)-β-CD 7a-c

The AD bis(TBDMS) derivative $\mathbf{6}{ }^{6}$ was treated with TsCl (901 $\left.\mathrm{mg}, 4.73 \times 10^{-3} \mathrm{~mol}\right)$ in dry pyridine $\left(10 \mathrm{~cm}^{3}\right)$ on an ice-waterbath for 3.5 h . The work-up procedure gave the product in 60% aq. MeCN solution ($20 \mathrm{~cm}^{3}$), which was applied to a lowpressure RP chromatography column by use of $60 \% \mathrm{aq} . \mathrm{MeCN}$ ($200 \mathrm{~cm}^{3}$) and gradient elution from 60% aq. $\mathrm{MeCN}\left(700 \mathrm{~cm}^{3}\right)$ to $100 \% \mathrm{MeCN}\left(700 \mathrm{~cm}^{3}\right)$ to give the tosyl ester $7 \mathrm{bb}(38.4 \mathrm{mg}$, 19.1%). Each of the other isomers, $7 \mathbf{a}$ and $7 \mathbf{c}$, was prepared similarly from $\mathbf{6 a}{ }^{6}$ and $\mathbf{6 c},{ }^{6}$ in 14.4% and 15.7% yield, respectively.

Compound 7a, R_{f} (solvent 1) 0.56 ; t_{R} [column: J'sphere ODSM80; gradient, $70-100 \%$ aq. MeCN (30 min) and $100 \% \mathrm{MeCN}$ (20 min); flow rate $0.2 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$] 30.0 min (Found: C, $48.25 ; \mathrm{H}$, 5.96; $\mathrm{S}, 7.31$. Calc. for $\mathrm{C}_{89} \mathrm{H}_{128} \mathrm{O}_{45} \mathrm{~S}_{5} \mathrm{Si}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.44 ; \mathrm{H}, 6.22$; S, 7.25%); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)-0.095,-0.090,-0.043$ and $-0.010(12 \mathrm{H}, \mathrm{MeSi}), 0.789,0.829$ and $0.841(18 \mathrm{H}, t-\mathrm{Bu})$, 2.366, 2.374, 2.380, 2.396 and $2.540(15 \mathrm{H}$, Me of Ts group), $4.550-4.640,4.675,4.703,4.745$ and $4.782[7 \mathrm{H}, \mathrm{C}(1) \mathrm{H}]$, $7.359,7.375,7.389,7.404,7.651,7.667,7.680,7.694,7.711$, 7.716, 7.731 and $7.747(20 \mathrm{H}, \mathrm{ArH}) ; m / z(+\mathrm{FAB}, \mathrm{LR}) 2156.6$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right],(-\mathrm{FAB}, \mathrm{LR}) 2131.6\left[(\mathrm{M}-\mathrm{H})^{-}\right]$and 2304.6 [($\mathrm{M}+$ toluenesulfonate $\left.)^{-}\right]$.

Compound 7b, R_{f} (solvent 1) $0.56 ; t_{\mathrm{R}} 25.7 \mathrm{~min}$ (Found: C, 48.17; H, 5.85; S, 7.41. Calc. for $\mathrm{C}_{89} \mathrm{H}_{128} \mathrm{O}_{45} \mathrm{~S}_{5} \mathrm{Si}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, $48.44 ; \mathrm{H}, 6.22 ; \mathrm{S}, 7.25 \%)$; $\left.\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)-0.074$, $-0.060,-0.052$ and $-0.038(12 \mathrm{H}, \mathrm{MeSi}), 0.812$ and 0.824 (18 $\mathrm{H}, t-\mathrm{Bu}), 2.373,2.377,2.382$ and $2.390(15 \mathrm{H}$, Me of Ts group), 4.614, 4.646, 4.662 and 4.738-4.750 [7 H, C(1)H], 7.354, 7.371, 7.386, 7.397, 7.408, 7.414, 7.650, 7.663, 7.667, 7.679, 7.696, 7.733, $7.749,7.753$ and $7.747(20 \mathrm{H}, \mathrm{ArH}) ; m / z(+\mathrm{FAB}, \mathrm{LR})$ $2156.6\left[(\mathrm{M}+\mathrm{Na})^{+}\right],(-\mathrm{FAB}, \mathrm{LR}) 2131.6\left[(\mathrm{M}-\mathrm{H})^{-}\right]$and 2304.7 [(M + toluenesulfonate $\left.)^{-}\right]$.

Compound $7 \mathrm{c}, R_{\mathrm{f}}$ (solvent 1) 0.56 ; $t_{\mathrm{R}} 25.4$ min (Found: C, 48.18; H, 6.04; S, 7.70. Calc. for $\mathrm{C}_{89} \mathrm{H}_{128} \mathrm{O}_{45} \mathrm{~S}_{5} \mathrm{Si}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: C, 48.44; H, 6.22; S, 7.25%); $\left.\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)-0.081$, $-0.064,-0.055$ and $-0.048(12 \mathrm{H}, \mathrm{MeSi}), 0.811$ and 0.816 (18 $\mathrm{H}, t-\mathrm{Bu}), 2.370,2.380,2.377$ and 2.387 (15 H , Me of Ts group), 4.592, 4.622, 4.639, 4.728 and $4.766[7 \mathrm{H}, \mathrm{C}(1) \mathrm{H}], 7.362,7.3795$, $7.397,7.415,7.669,7.686,7.689,7.701,7.706,7.710,7.717$, 7.726, 7.753 and $7.770(20 \mathrm{H}, \mathrm{ArH}) ; m / z(+\mathrm{FAB}, \mathrm{LR}) 2156.6$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 2084.0\left[(\mathrm{M}+\mathrm{K})^{+}\right](-\mathrm{FAB}, \mathrm{LR}) 2132.6\left[(\mathrm{M})^{-}\right]$ and $2286.6\left[(\mathrm{M}+\text { nitrobenzyl alcohol })^{-}\right]$.

Conversion of 7a-c to 5a-c

A solution of the AD TBDMS tosyl ester $7 \mathbf{b}(16.5 \mathrm{mg}$, $\left.7.96 \times 10^{-6} \mathrm{~mol}\right)$ in $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{KOH}-75 \% \mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was kept at $70^{\circ} \mathrm{C}$ for 1 day. After work-up procedure, the aqueous solution ($20 \mathrm{~cm}^{3}$) was subjected to low-pressure chromatography. Elution with water ($100 \mathrm{dm}^{3}$) followed by gradient elution from water ($200 \mathrm{~cm}^{3}$) to 40% aq. EtOH $\left(200 \mathrm{~cm}^{3}\right)$ gave the anhydride $\mathbf{5 b}(6.5 \mathrm{mg}, 80.5 \%)$. Similarly, $\mathbf{7 a}$ and 7 c were converted to $\mathbf{5 a}(94.8 \%)$ and $\mathbf{5 c}(99.8 \%)$, respectively.

Acknowledgements

We thank Japan Maize Products Co. Ltd. for a generous gift of $\beta-C D$, and Professor Kyoko Koizumi and Professor Toshiko Tanimoto of Mukogawa Women's University for helpful discussions on the preparation of bis(TBDMS)- β-CDs.

References

1 Part 10, H. Yamamura, T. Yotsuya, S. Usami, A. Ivasa, S. Ono, Y. Tanabe, D. Iida, T. Katsuhara, K. Kano, T. Uchida, S. Araki and M. Kawai, J. Chem. Soc., Perkin Trans. 1, 1998, 1299

2 Comprehensive Supramolecular Chemistry, ed. J. L. Atwood, J. E. D Davies, D. D. MacNicol, F. Vögtle and J.-M. Lehn, Elsevier Science Ltd., Oxford, 1996, vol. 3.

3 R. Breslow and C. Schmuck, J. Am. Chem. Soc., 1996, 118, 6601.
4 K. Fujita, H. Yamamura, A. Matsunaga, T. Imoto, K. Mihashi and T. Fujioka, J. Am. Chem. Soc., 1986, 108, 4509.

5 H. Yamamura, H. Nagaoka, K. Saito, M. Kawai, Y. Butsugan, T. Nakajima and K. Fujita, J. Org. Chem., 1993, 58, 2936; K. Fujita,
H. Yamamura, T. Imoto and I. Tabushi, Chem. Lett., 1988, 543.

6 N. Nakanishi, J. Tsujikawa, N. Hara, T. Tanimoto and K. Koizumi, Yakugaku Zasshi, 1990, 110, 477 (Chem. Abstr., 1991, 114, 69924).
7 K. K. Ogilvie and D. J. Iwacha, Tetrahedron Lett., 1973, 317.

[^0]: \dagger Various NMR spectra for compounds 5a-c are available as supplementary data. For direct electronic access see http://www.rsc.org/ suppdata/p1/1999/3111, otherwise available from BLDSC (SUPPL. No. 57645 , 13 pp.) or the RSC library. See Instructions for Authors available via the RSC web page (http://www.rsc.org/authors).

